欢迎您,来到青旗(上海)生物技术发展有限公司!
简要描述:青旗(上海)生物技术发展有限公司,总部位于上海浦东新区,依托本地高校资源,逐步发展成为以生物技术为主的研发、生产、培训为一体的综合化产业平台,在标准化细胞库建立及细胞药物前端模型方面成果显著。公司生产经营原代细胞、细胞系、ELISA试剂盒、感受态细胞和HPLC检测等科研产品与服务。我们秉承对用户负责的态度,以对科研的高度严谨,以严格的质量控制,为广大生物医学科研用户提供更优质的服务!
更新时间:2021-05-24
厂商性质:生产厂家
浏览次数:566
品牌 | 其他品牌 | 货号 | BFN60800692 |
---|---|---|---|
规格 | T25培养瓶x1 1.5ml冻存管x2 | 供货周期 | 现货 |
主要用途 | 仅供科研 | 应用领域 | 医疗卫生,生物产业 |
细胞名称 | 人肝癌细胞HepG2 | ||
货物编码 | BFN60800692 | ||
产品规格 | T25培养瓶x1 | 1.5ml冻存管x2 | |
细胞数量 | 1x10^6 | 1x10^6 | |
保存温度 | 37℃ | -198℃ | |
运输方式 | 常温保温运输 | 干冰运输 | |
安全等级 | 1 | ||
用途限制 | 仅供科研用途 1类 |
培养体系 | DMEM高糖培养基(Hyclone)+10%胎牛血清(Gibco)+1%双抗(Hyclone) | ||
培养温度 | 37℃ | 二氧化碳浓度 | 5% |
简介 | 人肝癌细胞HepG2细胞来源于一名15岁的白人少年的肝癌组织。该细胞表达甲胎蛋白、白蛋白、α-2-巨球蛋白、α-1-抗胰蛋白酶、转铁蛋白、α-1-抗凝乳蛋白酶、结合珠蛋白、铜蓝蛋白、纤溶酶原、补体C4、C3激活物、纤维蛋白原、α-1酸性糖蛋白、α-2-HS-糖蛋白、β-脂蛋白、视黄醇结合蛋白;表达胰岛素受体和胰岛素样生长因子IGFⅡ的受体;该细胞具有3-羟基-3-甲酰辅酶A还原酶和肝甘油三酯脂肪酶的活性。目前尚未证明该细胞中有HBV基因组。 人肝癌细胞HepG2细胞由青旗(上海)生物技术发展有限公司于2019年引种自ATCC(HB-8065)。 | ||
注释 | Problematic cell line: Misidentified. Originally thought to be a hepatocellular carcinoma cell line but shown to be from an hepatoblastoma (PubMed=19751877). Part of: Cancer Cell Line Encyclopedia (CCLE) project. Part of: ENCODE project common cell types; tier 1. Part of: JFCR45 cancer cell line panel. Part of: MD Anderson Cell Lines Project. Part of: TCGA-110-CL cell line panel. Doubling time: ~50-60 hours (DSMZ). Omics: Deep antibody staining analysis. Omics: Deep exome analysis. Omics: Deep phosphoproteome analysis. Omics: Deep proteome analysis. Omics: Deep RNAseq analysis. Omics: DNA methylation analysis. Omics: Genome sequenced. Omics: H3K27ac ChIP-seq epigenome analysis. Omics: H3K27me3 ChIP-seq epigenome analysis. Omics: H3K36me3 ChIP-seq epigenome analysis. Omics: H3K4me1 ChIP-seq epigenome analysis. Omics: H3K4me2 ChIP-seq epigenome analysis. Omics: H3K4me3 ChIP-seq epigenome analysis. Omics: H3K79me2 ChIP-seq epigenome analysis. Omics: H3K9ac ChIP-seq epigenome analysis. Omics: H3K9me3 ChIP-seq epigenome analysis. Omics: H4K20me1 ChIP-seq epigenome analysis. Omics: Metabolome analysis. Omics: Protein expression by reverse-phase protein arrays. Omics: Secretome proteome analysis. Omics: SNP array analysis. Omics: Transcriptome analysis. Omics: Virome analysis using proteomics. | ||
STR信息 | Amelogenin:X,Y;CSF1PO:10,11;D13S317:9,13;D16S539:12,13;D18S51:13,14;D19S433:15.2;D21S11:29,31;D2S1338:19,20;D3S1358:15,16;D5S818:11,12;D7S820:10;D8S1179:15,16;FGA:22,25;TH01:9;TPOX:8,9;vWA:17; | ||
参考文献 | PubMed=233137; DOI=10.1038/282615a0 Aden D.P., Fogel A., Plotkin S.A., Damjanov I., Knowles B.B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282:615-616(1979)
PubMed=6248960; DOI=10.1126/science.6248960 Knowles B.B., Howe C.C., Aden D.P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497-499(1980)
Patent=US4393133 Knowles B.B., Aden D.P. Human hepatoma derived cell line, process for preparation thereof, and uses therefor. Patent number US4393133, 12-Jul-1983
PubMed=2439335; DOI=10.1111/j.1432-1033.1987.tb11497.x Vincent C., Marceau M., Blangarin P., Bouic P., Madjar J.J., Revillard J.-P. Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes. Eur. J. Biochem. 165:699-704(1987)
PubMed=8384076; DOI=10.1016/0165-4608(93)90227-D Chen H.-L., Chiu T.-S., Chen P.-J., Chen D.-S. Cytogenetic studies on human liver cancer cell lines. Cancer Genet. Cytogenet. 65:161-166(1993)
PubMed=8389256; DOI=10.1093/carcin/14.5.987 Hsu I.C., Tokiwa T., Bennett W., Metcalf R.A., Welsh J.A., Sun T., Harris C.C. p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogenesis 14:987-992(1993)
PubMed=8050184; DOI=10.1111/j.1365-2249.1994.tb06089.x Wadee A.A., Paterson A., Coplan K.A., Reddy S.G. HLA expression in hepatocellular carcinoma cell lines. Clin. Exp. Immunol. 97:328-333(1994)
DOI=10.11418/jtca1981.16.3_173 Mihara K., Miyazaki M., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ohashi R., Namba M. The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory. Tissue Cult. Res. Commun. 16:173-178(1997)
PubMed=9178645; DOI=10.1006/cimm.1997.1108 Nakao M., Sata M., Saitsu H., Yutani S., Kawamoto M., Kojiro M., Itoh K. CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma. Cell. Immunol. 177:176-181(1997)
PubMed=9359923; DOI=10.18926/AMO/30789 Mihara K., Miyazaki M., Kondo T., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ishioka C., Namba M. Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory. Acta Med. Okayama 51:261-265(1997)
PubMed=11050057; DOI=10.1053ep.2000.19349 Wong N., Lai P., Pang E., Leung T.W.-T., Lau J.W.-L., Johnson P.J. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 32:1060-1068(2000)
PubMed=12029633; DOI=10.1053ep.2002.33683 Yasui K., Arii S., Zhao C., Imoto I., Ueda M., Nagai H., Emi M., Inazawa J. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35:1476-1484(2002)
PubMed=12068308; DOI=10.1038/nature00766 Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A. Mutations of the BRAF gene in human cancer. Nature 417:949-954(2002)
DOI=10.1385/CP:1:3-4:313 Pang R.T.K., Poon T.C.W., Wong N., Lai P.B.-S., Wong N.L.Y., Chan C.M.L., Yu J.W.S., Chan A.T.C., Sung J.J.Y. Comparison of protein expression patterns between hepatocellular carcinoma cell lines and a hepatoblastoma cell line. Clin. Proteomics 1:313-331(2004)
PubMed=14980111 Zhai B.-J., Wu F., Shao Z.-Y., Hu K., Zhao C.L., Wang Z.-B. Establishment of human hepatocellular carcinoma multidrug-resistance cell line (HepG2/Adm) and study apoptosis induced by low-frequency pulse ultrasound exposure. Zhonghua Gan Zang Bing Za Zhi 12:95-98(2004)
PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234 Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T. Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays. Mol. Cancer Ther. 4:399-412(2005)
PubMed=17254797; DOI=10.1016/j.biologicals.2006.10.001 Azari S., Ahmadi N., Tehrani M.J., Shokri F. Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran. Biologicals 35:195-202(2007)
PubMed=19751877; DOI=10.1016/j.humpath.2009.07.003 Lopez-Terrada D.H., Cheung S.W., Finegold M.J., Knowles B.B. Hep G2 is a hepatoblastoma-derived cell line. Hum. Pathol. 40:1512-1515(2009)
PubMed=20069059; DOI=10.1155/2010/437143 Srisomsap C., Sawangareetrakul P., Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Bhudhisawasdi V., Wongkham S., Svasti J. Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes. J. Biomed. Biotechnol. 2010:437143-437143(2010)
PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458 Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A. A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res. 70:2158-2164(2010)
PubMed=20228232; DOI=10.1124/dmd.109.031831 Hart S.N., Li Y., Nakamoto K., Subileau E.-A., Steen D., Zhong X.-B. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab. Dispos. 38:988-994(2010)
PubMed=21269460; DOI=10.1186/1752-0509-5-17 Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J. Initial characterization of the human central proteome. BMC Syst. Biol. 5:17-17(2011)
PubMed=22278370; DOI=10.1074/mcp.M111.014050 Geiger T., Wehner A., Schaab C., Cox J., Mann M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)
PubMed=22460905; DOI=10.1038/nature11003 Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603-607(2012)
PubMed=23325432; DOI=10.1101/gr.147942.112 Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23:555-567(2013)
PubMed=23505090; DOI=10.1002/hep.26402 Wang K., Lim H.Y., Shi S., Lee J., Deng S., Xie T., Zhu Z., Wang Y., Pocalyko D., Yang W.J., Rejto P.A., Mao M., Park C.-K., Xu J. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58:706-717(2013)
PubMed=23887712; DOI=10.1038/ncomms3218 Nault J.-C., Mallet M., Pilati C., Calderaro J., Bioulac-Sage P., Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4:2218-2218(2013)
PubMed=24116068; DOI=10.1371/journal.pone.0075692 Weiskirchen R., Weimer J., Meurer S.K., Kron A., Seipel B., Vater I., Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C. Genetic characteristics of the human hepatic stellate cell line LX-2. PLoS ONE 8:E75692-E75692(2013)
PubMed=24618588; DOI=10.1371/journal.pone.0091433 Chernobrovkin A.L., Zubarev R.A. Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins. PLoS ONE 9:E91433-E91433(2014)
PubMed=25960936; DOI=10.4161/21624011.2014.954893 Boegel S., Lower M., Bukur T., Sahin U., Castle J.C. A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. OncoImmunology 3:E954893-E954893(2014)
PubMed=25485619; DOI=10.1038/nbt.3080 Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol. 33:306-312(2015)
PubMed=25574106; DOI=10.3748/wjg.v21.i1.311 Cevik D., Yildiz G., Ozturk M. Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations. World J. Gastroenterol. 21:311-317(2015)
PubMed=26160117; DOI=10.1093/toxsciv136 Sison-Young R.L.C., Mitsa D., Jenkins R.E., Mottram D., Alexandre E., Richert L., Aerts H., Weaver R.J., Jones R.P., Johann E., Hewitt P.G., Ingelman-Sundberg M., Goldring C.E.P., Kitteringham N.R., Park B.K. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol. Sci. 147:412-424(2015)
PubMed=26825538; DOI=10.1016/j.jprot.2016.01.016 Wisniewski J.R., Vildhede A., Noren A., Artursson P. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J. Proteomics 136:234-247(2016)
PubMed=27329724; DOI=10.18632/oncotarget.10161 Watari K., Nishitani A., Shibata T., Noda M., Kawahara A., Akiba J., Murakami Y., Yano H., Kuwano M., Ono M. Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma. Oncotarget 7:47403-47417(2016)
PubMed=27470094; DOI=10.1016/j.chroma.2016.07.042 Liu Z.-Y., Wang F.-J., Chen J., Zhou Y., Zou H.-F. Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy. J. Chromatogr. A 1461:35-41(2016)
PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005 Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H. Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell 31:225-239(2017)
DOI=10.1101/378497 Zhou B., Ho S.S., Greer S.U., Spies N., Bell J.M., Zhang X., Zhu X., Arthur J.G., Byeon S., Pattni R., Saha I., Song G., Ji H.P., Perrin D., Wong W.H., Abyzov A., Urban A.E. Haplotype-resolved and integrated genome analysis of ENCODE cell line HepG2. bioRxiv 2018:378497-378497(2018)
PubMed=29610054; DOI=10.1016/j.dmpk.2018.03.003 Shi J., Wang X., Lyu L., Jiang H., Zhu H.-J. Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes. Drug Metab. Pharmacokinet. 33:133-140(2018)
PubMed=29660373; DOI=10.1016/j.bbagen.2018.04.012 Touat-Hamici Z., Bulteau A.-L., Bianga J., Jean-Jacques H., Szpunar J., Lobinski R., Chavatte L. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines. Biochim. Biophys. Acta 1862:2493-2505(2018)
PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747 Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A. An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines. Cancer Res. 79:1263-1273(2019)
PubMed=31068700; DOI=10.1038/s41586-019-1186-3 Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569:503-508(2019)
PubMed=31395879; DOI=10.1038/s41467-019-11415-2 Yu K., Chen B., Aran D., Charalel J., Yau C., Wolf D.M., van 't Veer L.J., Butte A.J., Goldstein T., Sirota M. Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types. Nat. Commun. 10:3574-3574(2019) |
验收细胞注意事项
1、收到人肝癌细胞HepG2细胞,请查看瓶子是否有破裂,培养基是否漏出,是否浑浊,如有请尽快联系。
2、收到人肝癌细胞HepG2细胞,如包装完好,请在显微镜下观察细胞。,由于运输过程中的问题,细胞培养瓶中的贴壁细胞有可能从瓶壁中脱落下来,显微镜下观察会出现细胞悬浮的情况,出现此状态时,请不要打开细胞培养瓶,应立即将培养瓶置于细胞培养箱里静止 3-5 小时左右,让细胞先稳定下,再于显微镜下观察,此时多数细胞会重新贴附于瓶壁。如细胞仍不能贴壁,请用台盼蓝染色法鉴定细胞活力,如台盼蓝染色证实细胞活力正常请按悬浮细胞的方法处理。
3、收到人肝癌细胞HepG2细胞后,请镜下观察细胞,用恰当方式处理细胞。若悬浮的细胞较多,请离心收集细胞,接种到一个新的培养瓶中。弃掉原液,使用新鲜配制的培养基,使用进口胎牛血清。刚接到细胞,若细胞不多时 血清浓度可以加到 15%去培养。若细胞迏到 80%左右 ,血清浓度还是在 10%。
4、收到人肝癌细胞HepG2细胞时如无异常情况 ,请在显微镜下观察细胞密度,如为贴壁细胞,未超过80%汇合度时,将培养瓶中培养基吸出,留下 5-10ML 培养基继续培养:超过 80%汇合度时,请按细胞培养条件传代培养。如为悬浮细胞,吸出培养液,1000 转/分钟离心 3 分钟,吸出上清,管底细胞用新鲜培养基悬浮细胞后移回培养瓶。
5、将培养瓶置于 37℃培养箱中培养,盖子微微拧松。吸出的培养基可以保存在灭菌过的瓶子里,存放于 4℃冰箱,以备不时之需。
6、24 小时后,人肝癌细胞HepG2细胞形态已恢复并贴满瓶壁,即可传代。(贴壁细胞)将培养瓶里的培养基倒去,加 3-5ml(以能覆盖细胞生长面为准)PBS 或 Hanks’液洗涤后弃去。加 0.5-1ml 0.25%含 EDTA 的胰酶消化,消化时间以具体细胞为准,一般 1-3 分钟,不超过 5 分钟。可以放入37℃培养箱消化。轻轻晃动瓶壁,见细胞脱落下来,加入 3-5ml 培养基终止消化。用移液管轻轻吹打瓶壁上的细胞,使之*脱落,然后将溶液吸入离心管内离心,1000rpm/5min。弃上清,视细胞数量决定分瓶数,一般一传二,如细胞量多可一传三,有些细胞不易传得过稀,有些生长较快的细胞则可以多传几瓶,以具体细胞和经验为准。(悬浮细胞)用移液管轻轻吹打瓶壁,直接将溶液吸入离心管离心即可。
7、贴壁细胞 ,悬浮细胞。严格无菌操作。换液时,换新的细胞培养瓶和换新鲜的培养液,37℃,5%CO2 培养。
特别提醒: 原瓶中培养基不宜继续使用,请更换新鲜培养基培养。